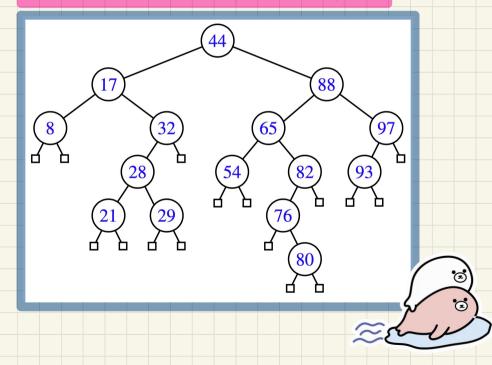
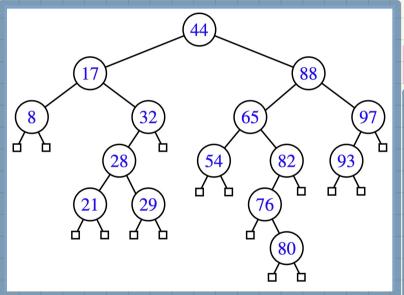
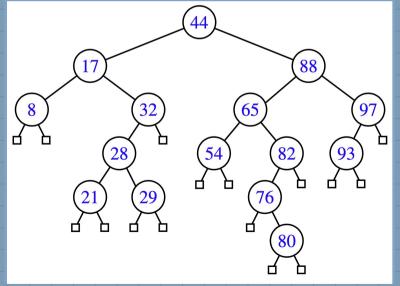

Visualizing BST Operation: Deletion


Case 1: Delete Entry with Key 31

Case 2: Delete Entry with Key 80


Case 3: Delete Entry with Key 32


Visualizing BST Operation: Deletion

Case 4.1: Delete Entry with Key 17

Case 4.2: Delete Entry with Key 88

Top-Down Heap Construction

Problem: Build a heap out of **N** entires, supplied one at a time.

- Initialize an *empty heap h*.
- As each new entry $\mathbf{e} = (k, v)$ is supplied, **insert** \mathbf{e} into \mathbf{h} .

Exercise: Build a heap out of the following 15 keys: <16, 15, 4, 12, 6, 7, 23, 20, 25, 9, 11, 17, 5, 8, 14>
Assumption: Key values supplied one at a time.

Bottom-Up Heap Construction

Problem: Build a heap out of **N** entires, supplied <u>all at once</u>.

• Assume: The resulting heap will be completely filled at all levels.

$$\Rightarrow$$
 N = 2^{h+1} - 1 for some **height** $h \ge 1$

$$[h = (log(N + 1)) - 1]$$

Perform the following steps called Bottom-Up Heap Construction:

Step 1: Treat the first $\frac{N+1}{2^1}$ list entries as heap roots.

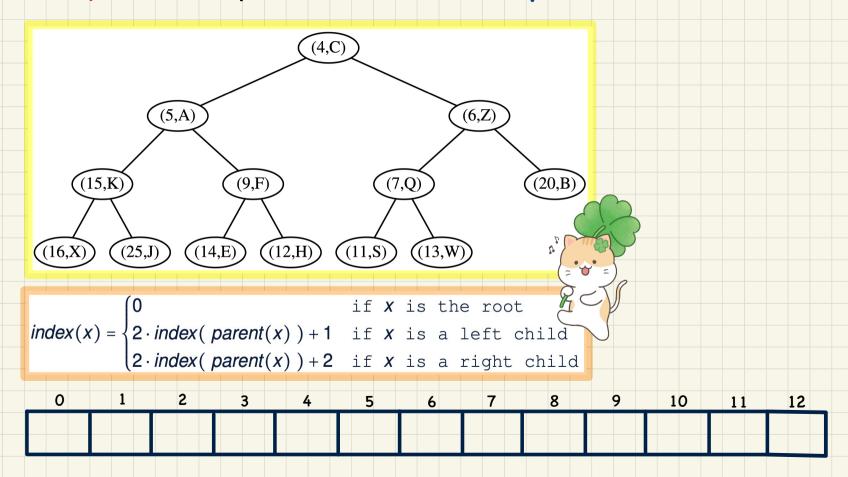
 $\therefore \frac{N+1}{2^1}$ heaps with height 0 and size $2^1 - 1$ constructed.

Step 2: Treat the next $\frac{N+1}{2^2}$ list entries as heap roots.

- ♦ Each root sets two heaps from Step 1 as its LST and RST.
- ♦ Perform *down-heap bubbling* to restore **HOP** if necessary.
- $\therefore \frac{N+1}{2^2}$ heaps, each with height 1 and size $2^2 1$, constructed.

. .

Step
$$h + 1$$
: Treat next $\frac{N+1}{2^{h+1}} = \frac{(2^{h+1}-1)+1}{2^{h+1}} = 1$ list entry as heap root.


- ♦ Each root sets two heaps from Step h as its LST and RST.
- ♦ Perform *down-heap bubbling* to restore **HOP** if necessary.
- $\therefore \frac{N+1}{2h+1} = 1$ heap, each with height h and size $2^{h+1} 1$, constructed.

Exercise: Build a heap out of the following 15 keys:

<16, 15, 4, 12, 6, 7, 23, 20, 25, 9, 11, 17, 5, 8, 14>

Assumption: Key values supplied all at once.

Array-Based Representation of a Complete BT

